Filtre passe-bas

Un filtre passe-bas est un filtre qui laisse passer les basses fréquences et qui atténue les hautes fréquences, c'est-à-dire les fréquences supérieures à la fréquence de coupure.



Catégories :

Filtre - Circuit électrique

Page(s) en rapport avec ce sujet :

  • Un filtre est un circuit électronique qui exécute une opération de ... Le concept de filtre passe-bas est d'atténuer les fréquences supérieures à sa... (source : elektronique)
  • Dans le circuit RC, la réactance capacitive diminue avec la fréquence..... Un filtre passe-bas se compose d'un condensateur de 4.7 [nF] et d'une... (source : epsic)
  • Filter Circuit for the Earthworm Seismic Data Acquisition System.... filtre passe-bas est ajusté sur wo=1/RC. A permet une commande de gain dans la bande... (source : abcelectronique)
Image sur laquelle a été appliqué un filtre passe-bas (résultat à droite)

Un filtre passe-bas est un filtre qui laisse passer les basses fréquences et qui atténue les hautes fréquences, c'est-à-dire les fréquences supérieures à la fréquence de coupure. Il pourrait aussi être nommé filtre coupe-haut. Le filtre passe-bas est l'inverse du filtre passe-haut et ces deux filtres combinés forment un filtre passe-bande.

Le concept de filtre passe-bas est une transformation mathématique appliquée à des données (un signal). L'implémentation d'un filtre passe-bas peut se faire numériquement ou avec des composants électroniques. Cette transformation a pour fonction d'atténuer les fréquences supérieures à sa fréquence de coupure fc et ce, dans l'objectif de conserver seulement les basses fréquences. La fréquence de coupure du filtre est la fréquence séparant les deux modes de fonctionnement idéaux du filtre : passant ou bloquant.

Filtre parfait

Un filtre passe-bas parfait a un gain constant dans sa bande passante et un gain nul dans la bande coupée. La transition entre les deux états est instantanée. Mathématiquement, il peut être réalisé en multipliant le signal par une fenêtre rectangulaire dans le domaine fréquentiel ou par une convolution avec un sinus cardinal (sinc) dans le domaine temporel. Ce type de filtre est nommé «mur de brique» dans le jargon des ingénieurs.

Naturellement, un filtre parfait n'est quasiment pas réalisable, car un sinus cardinal est une fonction illimitée. Ainsi, le filtre devrait prédire le futur et avoir une connaissance illimitée du passé pour effectuer la convolution et obtenir l'effet désiré. Il est envisageable d'approximer particulièrement scrupuleusement ce filtre de manière numérique quand on dispose d'un signal pré-enregistré (en ajoutant des zéros aux deux extrémités de la série d'échantillons) ou pour un signal périodique.

En temps réel, les filtres numériques peuvent approximer ce filtre en insérant un délai volontaire dans le signal, ce qui sert à «connaître le futur du signal». Cette opération crée un déphasage entre la sortie et l'entrée et naturellement, plus le délai inséré est court, plus le filtre se rapprochera du filtre parfait.

Filtre passe-bas analogique

Un filtre passe-bas peut être implémenté de façon analogique avec des composants électroniques. Ainsi, ce genre de filtre s'applique sur des signaux continus en temps réel. Les composants et la configuration du circuit fixeront les différentes caractéristiques du filtre, telles que l'ordre, la fréquence de coupure et son diagramme de Bode. Les filtres analogiques classiques sont du premier ou du second ordre. Il existe plusieurs familles de filtres analogiques : Butterworth, Tchebychev, Bessel, elliptique, etc. L'implémentation des filtres de même famille se fait le plus souvent en utilisant la même configuration de circuit, et ceux-ci possèdent la même forme de fonction de transfert, mais ce sont les paramètres de celle-ci qui changent, par conséquent la valeur des composants du circuit électrique.

Filtre passe-bas du premier ordre

Un filtre passe-bas du premier ordre est caractérisé par sa fréquence de coupure fc. La fonction de transfert du filtre est obtenue en dénormalisant le filtre passe-bas normalisé en substituant ωn par ω / ωc, ce qui donne la fonction de transfert suivante :

H(j \omega) = \frac{v_o}{v_i} = \frac {K}{1+j\frac{\omega}{\omega_c}}

\displaystyle \omega = 2 \pi f
\displaystyle \omega_c =2 \pi f_c

Le module et la phase de la fonction de transfert égalent à :

|H(\omega)| = \left | \frac{v_o}{v_i} \right |=\frac{K}{\sqrt{1+\big(\frac{\omega}{\omega_c}\big)ˆ2}}
\phi(\omega) = \arg H(j \omega) = - \arg \left ( 1+j\frac{\omega}{\omega_c} \right) = - \arctan \left( \frac{\omega}{\omega_c} \right)

Il y a plusieurs méthodes pour implémenter ce filtre. Une réalisation active et une réalisation passive sont ici présentées. K est le gain du filtre.

Circuit passif

La manière la plus simple de réaliser physiquement ce filtre est d'utiliser un circuit RC. Comme son nom l'indique, ce circuit est constitué d'une résistance R et d'un condensateur de capacité C. Ces deux éléments sont positionnés en série avec la source vi du signal. Le signal de sortie vo est récupéré aux limites du condensateur. Pour retrouver la fonction de transfert de ce filtre, il faut travailler dans le domaine de Laplace en utilisant les impédances des éléments. Avec cette technique, le circuit devient un simple diviseur de tension, et on obtient :

 H(j \omega) = \frac{v_o}{v_i} = \frac {1}{1+jRC\omega}

Dans cette équation, j est un nombre complexe (j tel que j²=-1) et ω est la pulsation du circuit ou fréquence radiale, exprimée en rad/s. Comme la fréquence de coupure d'un circuit RC est :

Un filtre passe-bas analogique d'ordre 1 réalisé avec un circuit RC
 f_c = \frac {1}{2\pi RC} ou \omega_c= \frac {1}{RC}


Ici ωc, la pulsation de coupure, est aussi la pulsation propre ωo du circuit, elle est aussi l'inverse de la constante de temps τ du circuit (majorée de la constante ). Ainsi, on obtient bel et bien la fonction de transfert typique du filtre passe-bas du premier ordre.

Avec cette fonction de transfert, on peut obtenir les diagrammes de Bode :

 G_{dB}(\omega) = 20 \cdot \log |H(\omega)| = -10 \cdot \log \left(1+ \big (\omega RC)ˆ2\right)
 \phi(\omega) = -\arctan \big(\omega  RC)

On peut distinguer alors deux situations parfaites :

Lieux de Bode du filtre passe-bas passif d'ordre 1
G_{dB} \simeq 0 et \phi \simeq 0
(le filtre est passant)
G_{dB} \sim -20 \cdot \log \left(\frac{\omega}{\omega_c}\right) et \phi \simeq -90
(le signal est alors filtré)

On remarque que pour ω = ωc, on a GdB = -3 dB.

Circuit actif

Il est aussi envisageable de réaliser un filtre passe-bas avec un circuit actif. Cette option permet d'ajouter du gain au signal de sortie, c'est-à-dire d'obtenir une amplitude supérieure à 0 dB dans la bande passante. Plusieurs configurations permettent d'implémenter ce genre de filtre.

Un filtre passe-bas actif

Dans la configuration présentée ici, la fréquence de coupure se définit comme suit :

 f_c = {1 \over 2 \pi R_2 C } ou \omega_\mathrm{c} = \frac{1}{R_2 C}

En utilisant les propriétés des amplificateurs opérationnels, et les impédances des éléments, on obtient la fonction de transfert suivante :

 H(j \omega) = \frac{v_o}{v_i} = \frac{-R_2}{R_1} \cdot \frac {1}{1+jR_2C\omega}

En basse fréquence, le condensateur agit comme un circuit ouvert, ce qui est confirmé par le fait que le terme de droite de l'équation précédente tend vers 1. La formule simplifiée ainsi obtenue nous donne le gain dans la bande passante :

H(\omega)_{\omega \ll \omega_c} = \frac{v_o}{v_i} =  \frac{-R_2}{R_1}

En haute fréquence, le condensateur agit comme un circuit fermé et le terme de droite tend vers 0, ce qui fait tendre la formule vers zéro.

H(\omega)_{\omega \gg \omega_c} = \frac{v_o}{v_i} \simeq 0

Avec la fonction de transfert, on peut démontrer que l'atténuation dans la bande rejetée est de 20 dB/décade ou de 6 dB par octave telle qu'attendu pour un filtre d'ordre 1.

Il est habituel de voir un circuit d'augmentcation ou d'atténuation transformé en filtre passe-bas en ajoutant un condensateur C. Ceci diminue la réponse du circuit à haute fréquence et aide à diminuer les oscillations dans l'amplificateur. A titre d'exemple, un amplificateur audio peut être un filtre passe-bas actif avec une fréquence de coupure de l'ordre de 100 kHz pour diminuer le gain à des fréquences qui autrement oscilleraient. Cette modification du signal n'altère pas les informations «utiles» du signal, car la bande audio (bande de fréquence audible par l'humain) couvre jusqu'à à peu près 20 kHz, ce qui est beaucoup inclus dans la bande passante du circuit.

Filtre passe-bas du second ordre

Un filtre passe-bas du second ordre est caractérisé par sa fréquence de résonance fo et par le facteur de qualité Q. Il est représenté par la fonction de transfert suivante :

H(j \omega) = \frac{v_o}{v_i} = \frac {K}{1-(\frac{\omega}{\omega_0})ˆ2+j\frac{(\frac{\omega}{\omega_0})}{Q}}

 \omega = 2 \pi f\,
\omega_o =2 \pi f_o\,


Le module et la phase de la fonction de transfert sont par conséquent égaux à :

|H(\omega)| = |\frac{v_o}{v_i}|= \frac{K}{\sqrt{(1-(\frac{\omega}{\omega_0})ˆ2)ˆ2+(\frac{(\frac{\omega}{\omega_0})}{Q})ˆ2}}


\phi(\omega) = - \arctan\left (\frac{\frac{(\frac{\omega}{\omega_0})}{Q}}{1 - (\frac{\omega}{\omega_0})ˆ2}\right )

Circuit passif

La manière la plus simple de réaliser physiquement ce filtre est d'utiliser un circuit RLC. Comme son nom l'indique, ce circuit est constitué d'une résistance R, d'un condensateur de capacité C et d'une inductance L. Ces trois éléments sont positionnés en série avec la source vi du signal. Le signal de sortie vo est récupéré aux limites du troisième et dernier élément, le condensateur. Pour retrouver la fonction de transfert de ce filtre, il faut travailler dans le domaine de Laplace en utilisant les impédances des éléments. Avec cette technique, le circuit devient un simple diviseur de tension, et on obtient :

H(j \omega) = \frac{v_o}{v_i} = \frac {\frac{-1}{LC}}{\omegaˆ2-j \omega \frac{R}{L}- \frac{1}{LC}}

Avec :

 \omega_o = \frac{1}{\sqrt{LC}}


 Q = \frac{1}{R} \sqrt{\frac{L}{C}}

Le module et la phase de ce circuit sont :

|H(\omega)| = \left|\frac{v_o}{v_i}\right|=\frac{1}{\sqrt{Rˆ2 Cˆ2 {\omega}ˆ2 + \big(1 - LC{\omega}ˆ2)ˆ2}}
\phi(\omega) =  - \arctan\left(\frac{RC\omega}{1 - LC{\omega}ˆ2}\right)

Circuit actif

Un filtre passe-bas actif du second ordre.

Plusieurs types de filtres existent pour réaliser un filtre actif du deuxième ordre. Les plus populaires sont les structures MFB et VCVS.

Filtre d'ordre supérieur

Les filtres d'ordre supérieur sont le plus souvent composés de filtres d'ordre 1 et 2 en cascade. La réalisation d'un filtre d'ordre 5, par exemple, se fait en plaçant deux filtres d'ordre 2 et un filtre d'ordre 1. Il serait envisageable de réaliser directement un filtre d'ordre 5, mais la difficulté de conception en serait largement augmentée.

Filtre passe-bas numérique

Voir filtre numérique.

Voir aussi


Électromagnétisme | Électricité | Électronique | Électrotechnique | Électrochimie | Automatique | Traitement du signal
Types de filtres : Filtre passe-bas · Filtre passe-haut · Filtre passe-bande · Filtre coupe-bande
filtres linéaires : Filtre de Bessel · Filtre de Butterworth · Filtre de Tchebychev · Filtre elliptique
filtres numériques : Filtre à réponse impulsionnelle finie · Filtre à réponse impulsionnelle illimitée

Recherche sur Amazon (livres) :



Ce texte est issu de l'encyclopédie Wikipedia. Vous pouvez consulter sa version originale dans cette encyclopédie à l'adresse http://fr.wikipedia.org/wiki/Filtre_passe-bas.
Voir la liste des contributeurs.
La version présentée ici à été extraite depuis cette source le 07/04/2010.
Ce texte est disponible sous les termes de la licence de documentation libre GNU (GFDL).
La liste des définitions proposées en tête de page est une sélection parmi les résultats obtenus à l'aide de la commande "define:" de Google.
Cette page fait partie du projet Wikibis.
Accueil Recherche Aller au contenuDébut page
ContactContact ImprimerImprimer liens d'évitement et raccourcis clavierAccessibilité
Aller au menu